
NVMe over CXL (NVMe-oC):
An Ultimate Optimization of Host-Device Data Movement

Bernard Shung, San Chang, Terry Cheng

Wolley Inc.

11/16/2023 1

Outline

• Problem Statement

• Prior Art on Host-Device Data Movement Optimization

• NVMe over CXL (NVMe-oC): Core Concept

• Application Examples Supporting NVMe-oC Core Concept

• NVMe-oC Performance Analysis

• NVMe-oC SSD versus Memory-Semantics SSD

• Local versus Network NVMe-oC

• Wolley’s NVMe-oC Prototypes – Work in Progress

• Summary

11/16/2023 2

Problem Statement

• As an NVMe SSD solution provider, why should I bother with CXL (if
my NVMe only uses PCIe or CXL.io)?

– What is the benefit to upgrade my controller IP from PCIe to CXL?

11/16/2023 3

Prior Art on Host-Device Data Movement Optimization
– Controller Memory Buffer (CMB)

• Controller Memory Buffer (CMB)
– Incorporated into NVMe 1.2 since 2014

– Hope to reduce host-device data movement

– CPU accesses CMB via memory read/write
TLP (MRd or MRw) and CMB is implemented
as part of PCIe BAR

• As host CPU can not access CMB as
efficiently as DDR memory, CMB is
generally used as a DMA buffer for block
data transfer among PCIe devices

4

CMB

CPU

NVMe
SSD

PCIe

DRAM
DDR

11/16/2023

command queue

data buffer

Prior Art on Host-Device Data Movement Optimization
– NVMe Computational Storage (CS)

• NVMe CS standardization
– TP4091: Computational Programs

– TP4131: Subsystem Local Memory
(SLM)

• NVMe CS runs program inside SSD
to operate data in Subsystem Local
Memory

• NVMe CS makes computation
closer to storage data to reduce
data movement, but it requires
tailored program that can run on
device CPU

5

https://nvmexpress.org/wp-content/uploads/FMS-2023-Computational-
Storage-Subsystem-Local-Memory.pdf11/16/2023

An Animation Video for NVMe over CXL

611/16/2023

NVMe over CXL (NVMe-oC): Core Concept

• A NVMe-oC device uses CXL.io to access a
NVMe SSD and CXL.mem to access an HDM

– CXL HDM enables cacheable high-performance
data read/write not attainable in CMB

• Key Advantages

– When the application only needs a fraction of
the block data, the destination of the block data
can be set to fall on the device HDM

– Host CPU can selectively retrieve the necessary
bytes of the block data via CXL.mem, reducing
the amount of host-device data movement

7

CPU

CXL Link

CXL Ctrl

NAND

C
X

L.
io

Memory

C
X

L.
m

em

NVMe-oC SSD

11/16/2023

Application Example (1): Key-value Store

• Three typical RocksDB (KVS)
production use cases at Facebook

– UDB (a MySQL storage layer for social
graph data)

– ZippyDB (a distributed key-value store)

– UP2X (a distributed key-value store for
AI/ML services)

• GET operations dominate and mostly
request small key-value access

– Unsorted and small-size key-value pairs are
stored in different storage block

8
Cao, Zhichao, et al. "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook" 18th USENIX Conference on File and Storage Technologies (FAST 20). 2020.

The average key size (AVG-K), the standard deviation of key size (SD-
K), the average value size (AVG-V), and the standard deviation of
value size (SD-V) of UDB, ZippyDB, and UP2X (in bytes)

11/16/2023

Application Example (2): Cache Systems

• Twemcache is used by Twitter as a
look-aside cache
– Upon a cache miss, cache clients read from

the backends and then write to cache.

– Upon cache writes, clients write to
backends, then write into the cache

• In Twitter production cache clusters
– The median of the object size curve for

storage is slightly larger than 100 bytes

– Top four production clusters’ mean object
sizes are 230, 55, 294 and 72 bytes,
respectively

9

(results from 153 cache clusters)

Yang, Juncheng, Yao Yue, and K. V. Rashmi. "A Large-scale Analysis of Hundreds of In-memory Key-value
Cache Clusters at Twitter" ACM Transactions on Storage (TOS) 17.3 (2021): 1-35.

11/16/2023

Application Example (3): fsync()

• Why fsync() is important?
– causes all modified data in the open file to be

saved to permanent storage

– commonly used by many applications to
guarantee the durability of a file

– blocks until the flushing data is completed

• fsync() involves a bunch of small random
read-modify-write operations,
significantly impacting application
performance
– CXL.mem perfect for sending small writes

– Modification of device memory minimize data
movement to host

10

He, Haochen, et al. "When Database Meets New Storage

Devices: Understanding and Exposing Performance

Mismatches via Configurations." Proceedings of the
VLDB Endowment 16.7 (2023): 1712-1725.

https://www.percona.com/blog/fsync-performance-storage-devices/

low fsync performance

SSD with
hundreds of
thousands

random 4KB
read/write

IOPS

11/16/2023

Application Example (4): VM IO Virtualization

• Virtio, a well-known software-based
I/O virtualization framework
– Using frontend and backend drivers for

the IO communication between VM and
the host machine

• As QEMU (or hypervisor) intercept IO
requests from VM, the underlying
software can change data movement
and return buffer address on device
HDM using NVMe-oC
– No modifications required to VM

applications

11

Kim, Sewoog, Heekwon Park, and Jongmoo Choi. "Direct-

Virtio: A New Direct Virtualized I/O Framework for NVMe

SSDs." Electronics 10.17 (2021): 2058.

Virtio: IO Virtualization Framework

11/16/2023

Performance Analysis for Reading Data with NVMe

12

tail

head

head

tail

Host Memory

Submission Queue Completion Queue

NVMe

Submission Queue
Tail Doorbell

Completion Queue
Head Doorbell

1

Insert command
queue entry

2
update the
tail to device

3

fetch command
queue entry

4KB

4KB

…

4

read
block
data

5 6

Insert
completion
queue entry

generate
interrupt

in BAR in BAR

7process
completion
entry

8

update the
head to device

MWr MWr
MRd MWr

Cpld MWr

MWr

Heavy Traffic

11/16/2023

Performance Analysis for Reading Data with NVMe-oC

13

head

tail

Host Memory

Completion Queue

NVMe-oC

Submission Queue
Tail Doorbell Completion Queue

Head Doorbell

1

Insert command
queue entry

2

update the
tail to device

in BAR
in BAR

7

8

update the
head to device

tail

head

Submission Queue

4KB

4KB

…
3

fetch
command

locally
4

Put read-
block-data

locally

5 6

Insert
completion
queue entry

generate
interrupt

MWr MWr MWr MWr MWr

Reduced
Traffic

process
completion
entry

NVMe-oC reduces overall latency by
(1) Perform some operations locally
(2) Reduce queuing delay of all operations

with a much less loaded bus

11/16/2023

NVMe-oC SSD versus Memory-Semantics SSD

NVMe-oC SSD Memory-Semantics SSD

Host Interface CXL CXL

Media Components NAND + DRAM NAND + DRAM

Legacy NVMe SSD Support Yes Yes

Functional Device(s) NVMe SSD and HDM memory NVMe SSD or HDM memory

Roles of NAND and DRAM DRAM as staging memory of NAND DRAM as cache of NAND

14

• Samsung was first to consider using CXL interface on a NVMe SSD, with their introduction of
Memory-Semantics SSD in Flash Memory Summit 2022

• But fundamentally NVMe-oC SSD and Memory-Semantics SSD are different, as highlighted below

11/16/2023

Local versus Network NVMe-oC

15

CXL Fabric

Host 1

Host 2

Host 3

NVMe SSD

Memory

Memory

P2P

CXL Type-3
EP Device

11/16/2023

Wolley’s NVMe-oC Prototype – Local NVMe-oC

• FPGA Implementation Platform
– Virtex® UltraScale+™ XCVU13P

– PCIe Gen3 x8 speed

– 128GB DDR4 DIMM for NVMe RAM-disk

– 4GB DDR4 DIMM for CXL HDM

• CXL Controller + NVMe-oC bridge
– CXL 1.1/2.0/3.0 Support

– Enable NVMe SSD and HDM coexist

– Optimize data movement between NAND and HDM

• Software
– Use SPDK NVMe driver to manually assign buffer location

for block read/write command such that block data can be
read to HDM

– There are no modifications to the SPDK NVMe driver

16

NVMe
Controller

NVMe-oC bridge

CXL Controller

DDR
controller

DDR
Memory (HDM)

.io .mem

DDR
controller

DDR
Memory

DDR will be
replaced with

NAND later11/16/2023

Wolley’s NVMe-oC Prototype – Network NVMe-oC

• 4-Port CXL Switch Prototype (current):
– Virtex® UltraScale+™ VU19P

– 2 Upstream Ports

– 2 Downstream Ports

– PCIe Gen3 x8 speed

– CXL 1.1/2.0

• NVMe-oC Switch Prototype (2024):
– Adding P2P Support

– Converting TLP to UIO inside switch for P2P

• CXL 3.0 Type 3 EP Prototype (2024):
– Adding UIO to HDM bridge

17

DSP0

USP0

NVMe
Controller

flash
controller

flash chip

CXL
Controller

(w/ UIO/HDM bridge)

DDR
controller

DDR
Memory

DSP1

USP1

NVMe SSD CXL 3.0 Type 3
Mem Device

4 Port CXL Switch
with NVMe-oC bridge

P2P

11/16/2023

Summary

• Many applications only use a fraction of the block data retrieved from storage

• NVMe-oC achieves “best of both worlds”
– Backward compatibility with NVMe storage infrastructure

– Efficient CXL.mem access of device side data

• NVMe-oC optimizes host-device data movement not attainable before
– Less data movement reduces power consumption and improves performance

• “Local NVMe-oC” integrates NVMe SSD and HDM, while “Network NVMe-oC”
takes advantage of P2P feature in CXL 3.0 fabric

• Host intelligence to optimally place staging data is an interesting/important topic

• Wolley hopes to contribute to hardware/software components of NVMe-oC to
make the vision a reality

1811/16/2023

	Slide 1: NVMe over CXL (NVMe-oC): An Ultimate Optimization of Host-Device Data Movement
	Slide 2: Outline
	Slide 3: Problem Statement
	Slide 4: Prior Art on Host-Device Data Movement Optimization – Controller Memory Buffer (CMB)
	Slide 5: Prior Art on Host-Device Data Movement Optimization – NVMe Computational Storage (CS)
	Slide 6: An Animation Video for NVMe over CXL
	Slide 7: NVMe over CXL (NVMe-oC): Core Concept
	Slide 8: Application Example (1): Key-value Store
	Slide 9: Application Example (2): Cache Systems
	Slide 10: Application Example (3): fsync()
	Slide 11: Application Example (4): VM IO Virtualization
	Slide 12: Performance Analysis for Reading Data with NVMe
	Slide 13: Performance Analysis for Reading Data with NVMe-oC
	Slide 14: NVMe-oC SSD versus Memory-Semantics SSD
	Slide 15: Local versus Network NVMe-oC
	Slide 16: Wolley’s NVMe-oC Prototype – Local NVMe-oC
	Slide 17: Wolley’s NVMe-oC Prototype – Network NVMe-oC
	Slide 18: Summary

