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What millennium are we in?

Memory and 1/0 have traditionally been separated

This has been our basic system architecture for thousands of years
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Resource A

CXL Trans

PCle PHY

PCle PHY

CXL Trans

Resource B

CXL is more than just another 1/0 bus

CXL allows the blending of processing, memory,
storage, and 1/0O over a consistent protocol

This enables virtualizing resources in
interesting new ways
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PCle SSD

CXL Memory
Module

NVMe-Over-CKXL™ |
Merges memory
and storage into a
unified interface

CXL.io

CXL.mem

NVMe-Over-

CXL

NVMe-oC
Controller
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The NVMe Over CXL Solution: Only grab the FLITs you need

PCle/CXL.io
NVMe-oC SSD

64 bytes

NVMe is just a cache protocol between NAND and DRAM

NVMe-oC places the controller memory buffer (CMB) in CXL space (HDM)
Processor grabs only the FLITs needed using CXL.mem

The rest of the CMB data (on average, 97%) remains where it is

This cache management scheme is expanded to create Virtual HDM
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PCle SSD
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NVMe-oC reduces wasted
data traffic over the fabric
by 30x or more

NVMe-oC supports persistence,
allowing checkpoint elimination
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Application

NVMe over DAX over HDM over BAEBI over CXL Pooling &
CXL™ CXL CXL CXL Sharing

User/Kernel Space

Use existing software APIs where possible
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NVMe-oC
Media

Controller
Volatile HDM

Volatile HDM

Virtual HDM

Virtual HDM

Persistent
HDM
Physical space
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Virtual address space
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Virtual address space

NVMe-oC operates in all access modes
simultaneously

XRAM always accessed as HDM
CMB, DAX, HDM all allowed

NAND to xRAM transfer schemes driven by
host using NVMe commands

Persistence regions can be partial
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NVMe-oC Software Development Kit (NSDK)

Standara
Block API

Global Memory Allocator Block 10
Standard o€

m ile A API
A App Memory Allocator File API
Memory Allocator SPDK

NSDK Sys Call mmap v

: FS
Management Block Generic Driver
DAX Driver

NVMe-oC Controller
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NVMe-oC Demonstration Platform — Booth 952

NVMe-oC Core IP

Device

Host Interface CXL 1.1/2.0 Gen3x8
HDM 16GB (DDR4-2000)
SSD 128GB ~ 1TB
System Clock 250MHz
NVMe 2.0
Operation Mode Memory / Storage

Demonstrating Virtual HDM mode
using NVMe-oC

CPU Intel Granite Rapids, 2 processors, 288-cpu
Memory 128GB DRAM 6400MT
0S Fedora release 40 (Forty)
Kernel 6.9.5
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NVMe-OC Versus Traditional SSD

NVMe-oC SSD vs. Native SSD

Native SSD on idle machine

-53%

1

Native SSD on busy machine

NVMe-oC SSD on idle machine

NVMe-oC SSD on busy machine [ —— -

0 500 1000 1500 2000 2500 3000 3500
M Read Bandwidth (MB/s)  ® Write Bandwidth (MB/s)

STREAM (memory benchmark) with 256 background threads

Results:
2.8X reduced impact on read performance
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Virtual HDM Mode Redis Performance Versus HDM

DRAM HDM
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Unmodified Redis (In-memory Key Value Store)

Results:
4X memory capacity
2X performance
90% cost reduction

NVMe-oC (DRAM + SSD)
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Virtual HDM Mode Compression Performance Versus HDM

In-memory Compression with Memory
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mDRAM 8GB ®HDM8G ®mHDM 8G +SSD 16GB HDM 8G + SSD 32GB

LZ77 lossless data compression method

Results:
4X memory compression
Same performance as DRAM
More compression threads executed
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Backup data
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Why HDM CMB?*

Facebook RocksDB X (Twitter) Twemcache _
* Translation: why
SITBH. . R ~1.0 use the DRAM on the
100% 5 )
90% Q0.8 device as CXL
80% w0
70% k5 memory?
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v Object size (Byte)
The average key size (AVG-K), the standard deviation of key size (SD- ..
K), the average value size (AVG-V), and the standard deviation of Majorlty of data accesses are between 50 and 300

value size (SD-V) of UDB, ZippyDB, and UP2X (in bytes)

bytes with median ~100 bytes (key values, objects)

AVG-K SD-K AVG-V SD-V
UDB 27.1 2.6 126.7 22.1

ZippyDB 479 37 429 261 With NVMe-oC, PCle traffic reduction > 97%
UpP2X 10.45 1.4 46.8 11.6

Cao, Zhichao, et al. "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads Yang, Juncheng, Yao Yue, and K. V. Rashmi. "A Large-scale Analysis of Hundreds of In-memory Key-value
at Facebook" 18th USENIX Conference on File and Storage Technologies (FAST 20). 2020. Cache Clusters at Twitter" ACM Transactions on Storage (TOS) 17.3 (2021): 1-35.
PN
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NVMe-oC Virtual HDM Mode:
Joint Management of DRAM + NAND by DAX

DAX software concept is introduced in Persistent
Memory Programming Model for byte-addressable

memory (e.g., NVDIMM, Intel® Optane™ persistent
memory)

Eliminate 1/O stack software overhead to shorten latency
for small and random I/O or memory operations

High-performance Memory Virtualization
NVMe-oC DAX allows applications to run on large
“memory” address space backed by SSD

SW-managed Cache vs. HW-managed Cache

NVMe-oC DAX manages page allocation/eviction on HDM

NVMe-oC DAX reacts to load/store in time after sending
requests to HW, while Samsung Memory-Semantic SSD

may experience unexpected latency and result in generic
software time-out

Load/Store

Handling
+

SwW

Cache
Management

_____ s

Restart
Load/Store
Instruction

!

Sem

CXL.mem
64B Flit

Serve
Request on
HDM

NVMe-oC

begins to
wait results

Load/Store

Restart
Load/Store
Instruction

}

Send
XL.mem
64B Flit
Host SW l

Cache }
HW
Managemen

Serve
Request on
HDM

Samsung
Memory-
Semantic SSD

vZoLLey



Host Intelligence in NVMe-oC DAX

Hit Rate Optimization on Device DRAM (as a cache)
0OS-managed Intelligence
Built-in cache strategy in NVMe-oC DAX
App-managed Intelligence
Users can optimize their applications with additional hint to the cache management
Prefetching

User v ¢ ¢ ¢ ¢ ¢ v
Application 0 old 0 Memory
Process Address
Space
0 0 Device
DRAM

o |

Samsung CMM-H solution relies on the OS to provide hints to memory-semantic SSDs, where the
hardware independently manages cache based on those hints.

NVMe-oC host-side cache management can precisely control over data allocation and eviction by software,
offering the greatest flexibility and adaptability
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